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Abstract 
The energy consumption of air conditioners for residential cooling applications creates a peak electricity demand  in the afternoon. 
This increases households’ electricity bills because the electricity tariff rates are expensive during peak hours. One practical solution 
to flatten the demand profile and shift the load to times with lower demand is pre-cooling. Pre-cooling involves running air 
conditioners to cool the thermal mass of buildings before peak demand. Due to the lack of insulation, and thermal mass 
characteristics, the energy consumed during pre-cooling events is higher than the peak load reduction, and the ratio of peak load 
reduction to the extra energy consumption highly depends on the thermal dynamics of the building. Therefore, pre-cooling in some 
houses might not be an economic choice. This necessitates the characterization of building thermal dynamics to quantify the pre-
cooling potentials of buildings and conditioned zones and avoid wasting energy in leaky houses. In this paper, the temporal change 
in indoor and thermal mass temperature, in Australian residential buildings, is simulated using a second-order linear differential 
equation (SDE) system and a dataset generated by AccuRate, a tool developed by CSIRO for rating Australian buildings. The data of 
indoor temperature, outdoor temperature, and solar radiation between the last cooling event and midnight of each day is fed into 
the model. The SDE system is converted into an autoregressive model by integrating over the sampling interval. Based on the transfer 
function of the autoregressive model, two different time constants, one short and one long are obtained for the modelled Australian 
houses to characterize their thermal response after each pre-cooling event. The former describes the heat transfer between building 
thermal mass and indoor air while the latter describes the time for heat transfer between indoor and outdoor air. It is observed that 
houses/zones with a higher time constant keep coolness for longer periods, making them more suitable for pre-cooling applications. 
In February, building B retains thermal comfort for less than two hours after pre-cooling to 22℃ while the case study with higher 
time constants, building M, retains thermal comfort for the next eight hours. If there is a peak in temperature evolution profile, it 
occurs earlier and is sharper in those buildings/zones with smaller time constants. Furthermore, if two zones have equal long-term 
time constants, the one with a higher short-term time constant is more suitable for pre-cooling applications. These findings highlight 
the reliability of time constants for ranking buildings based on their ability to maintain thermal comfort after pre-cooling.  
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1.1 INTRODUCTION 
Looking at the data of electricity consumption of the residential sector in Australia, it emerges that there is a peak around 5:00 PM 
for apartment units and 5:30 PM for houses [1]. Statistics show that on average, Air Conditioning (AC) can be responsible for around 
50% of the peak demand in Australian eastern capital cities [2]. The reason is that people arrive home in the afternoon and turn on 
the AC system to make the house comfortable. It leads to a spike in network electricity demand, and infrastructure underutilization 
since the capacity of the electricity network must be able to meet the peak demand, which only occurs a few hours in a year. 
Furthermore, when the demand increases, the network operators run power plants with higher operational costs, which results in a 
higher levelized cost of electricity [3]. This extra cost is passed to the households through expensive electricity rates during peak 
periods, resulting in high electricity bills. 
There are solutions to overcome the high peak consumption that can be implemented at a low-voltage distribution network, where 
small commercial and residential buildings are located. One of the feasible solutions is load shifting using building thermal mass [4]. 
Building thermal mass includes building envelopes, structure, construction materials, and furniture. Each of these components has a 
thermal storage capacity and different thermal dynamics [5]. Charging and discharging the capacity of thermal mass via thermal 
energy is called thermal mass activation, which can be done through four different methods [6] namely surface activation, forced-air 
activation, hydronic activation, and electrical activation. The most common method is surface activation since it does not require any 
extra investment and can be done using almost all the existing AC systems. By charging the thermal mass and discharging it later, a 
proportion of the load associated with air conditioning can be shifted. If the discharge time is before the peak load period, and the 
discharge occurs during the peak period, the thermal mass activation process leads to peak load shifting. 
Pre-cooling is the act of lowering the temperature of thermal mass before the peak period to store coolness and release it during 
peak hours [7-9]. In a pre-cooling strategy, the thermostat setpoint is reduced a few hours before the peak and it is increased while 
the demand and electricity rates are high. When the thermostat setpoint is high, the AC system is turned off, but the stored coolness 
in the thermal mass does not allow the indoor temperature to rise quickly. The thermal mass acts as a heat sink and releases the 
coolness at a slower rate than the indoor temperature, mainly due to the higher specific heat capacity of thermal mass compared to 
air [5]. Consequently, the indoor air temperature remains within the thermal comfort range for a period that is long enough to reduce 
AC cooling requirements during the evening peak demand period, resulting in a reduction in household electricity bills [10]. Thermal 
comfort, which is a function of indoor air psychrometric properties, clothing, and occupants’ metabolic rate, is defined as the 
expression of satisfaction from the indoor thermal environment [11].   
The time that the indoor environment remains thermally comfortable depends on many factors including weather condition [12], 
level of insulation [13, 14], quantity and quality of thermal mass [5], internal heat gains, and the type of AC (such as evaporative 
cooling or forced-air thermal mass activation). Also, depending on the orientation of the building and interaction between 
conditioned zones, each zone might have different thermal dynamics [15]. Due to the performance gap of buildings, which is the 
difference between design and real construction [16, 17], and also the fact that the quantity of thermal mass is hard to measure, it 
is not accurate to estimate the thermal performance of buildings based on the construction materials and design. Therefore, data-
driven models are frequently used to understand the thermal dynamics of buildings. Decrement factor and time lag [12], building 
airtightness [14], long and short term time constants [18, 19], heat loss coefficient [20], and decay factor [21] are some of the metrics 
that have been extracted using the operational data of the building to quantify its thermal dynamics.  
Based on the indoor temperature measurement of a house, Madsen and Holst [19] concluded that at least two different time 
constants are required to describe a buildings’ thermal response. If a single heat capacitance and time constant is considered for a 
building, such as that proposed by Andrew Law [21], the short term variations cannot be captured. Another problem with models 
based on decay factor and Newton’s cooling law [21] is that they are derived from the difference between indoor and outdoor 
temperature profiles. Therefore, different inputs such as solar radiation or wind speed cannot be fed into the model to consider their 
effects on decay cooling profile. To obtain two different time constants and consider more inputs, Madsen and Holst [19] proposed 
a model with two different heat capacitances, one for the thermal mass and one for the indoor air temperature and simulated a 
building in a cold climate. Palmer Real et al. [14] simulated the temperature decay of Danish buildings overnight and classified them 
based on their time constants. Their results highlight that the long-term time constant represents the main thermal dynamics, and 
lower values for this term mean that the building has a faster rate of temperature decay overnight. The abovementioned studies 
used time constants and the decay factor for heating applications. 
To the best of the authors' knowledge, there is no unique method to quantify the pre-cooling potentials of different zones of a 
building based on their thermal dynamics. In this paper, we modified the method presented in [18] to calculate two different time 
constants for the thermal response after each cooling event in three multi-zone Australian buildings. We added solar radiation data 
to the model of Palmer Real et al. [18] to validate the applicability of the model to capture daytime thermal dynamics. Moreover, 
this is the first study investigating thermal dynamics of a multi-zone building using its time constants, and the first time that these 
time constants are used for cooling applications. With the help of the obtained time constants, we rank zones based on their pre-
cooling potential and their ability to maintain thermal comfort after pre-cooling. 
The rest of the paper is organized as follows: Methodology, section 1.2, followed by data description (section 1.3), model 
development (section 1.4), and parameter estimation (section 1.5). Results and discussion, section 1.6, describes the outcomes of 
the study followed by conclusions in section 1.7. 
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1.2 METHODOLOGY 
In this section, the dataset and the procedure used for the calculation of time constants after pre-cooling are described. It includes 
data preparation, deriving an autoregressive model from a second-order stochastic differential equation (SDE), extracting the transfer 
function of the autoregressive model, and the least-square method for parameter estimation. 

1.3 DATA AND CASE STUDIES 
In this study, data for three multi-zone buildings were used. The dataset is 12 months’ worth of indoor air temperature, outdoor air 
temperature, solar radiation and AC consumption data from CSIRO's home energy rating tool, AccuRate [22]. The energy used by AC 
units in each zone is controlled separately. The details of each case study are presented in Table 1.  

Table 1. Details of the three case study buildings. 

Name Number 
of Floors 

Number 
of Zones 

Number of 
Conditioned Zones Location Climate Zone 

B 1 13 8 Brisbane Warm humid summer, mild 
winter 

M 2 26 20 Melbourne Mild temperate 

M_2 2 20 16 Melbourne Mild temperate 

1.4 MODEL  
Figure 1 shows a schematic of the interaction between building thermal mass, indoor air, and outdoor air. Building materials and 
furniture exchange heat with the indoor air, and then heat transfers from indoor air to outdoor air and the other way round. 𝜏𝜏1 and 
𝜏𝜏2 are the time constants of these two processes, respectively. 

 

Figure 1. A schematic of the heat transfer between thermal mass, indoor air (𝑇𝑇𝑖𝑖) and outdoor air (𝑇𝑇𝑎𝑎). 

The change of indoor and thermal mass temperatures (𝑑𝑑𝑇𝑇𝑖𝑖 and 𝑑𝑑𝑇𝑇𝑚𝑚) is simulated by equation (1), which is a second-order linear SDE. 
In this equation that describes the relationship between cooling power, physical properties, and indoor temperature evolution, 𝑇𝑇𝑖𝑖 
and 𝑇𝑇𝑚𝑚 are indoor and thermal mass temperatures, respectively. The exogenous inputs are global solar radiation, 𝐼𝐼𝑔𝑔, space cooling 
power, 𝑄𝑄, and outdoor temperature, 𝑇𝑇𝑎𝑎.  Model parameters are thermal capacity of indoor air, 𝐶𝐶𝑖𝑖, thermal capacity of thermal mass, 
𝐶𝐶𝑚𝑚, thermal resistance between indoor air and ambient air, 𝑅𝑅𝑎𝑎, thermal resistance between indoor air and thermal mass, 𝑅𝑅𝑖𝑖 , and 
effective window area, 𝐴𝐴𝑤𝑤. The term 𝜎𝜎𝑘𝑘𝑑𝑑𝜔𝜔𝑘𝑘∀𝑘𝑘 ∈ [1,2] is a stochastic term representing a Wiener process with variance               
𝜎𝜎𝑘𝑘2∀𝑘𝑘 ∈ [1,2] to account for model uncertainty. 
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The SDE presented in equation (1) is a continuous-time model for heat dynamics. Since the data collection is discrete, equation 
(1) must be discretized by integrating over the sampling interval [t, t+s), assuming that all the input parameters are constant 
in an interval. The process is completely described in [18, 19]. The resulting discrete model is presented in equation (2): 

 �
𝑇𝑇𝑖𝑖𝑡𝑡+1 =  ∅11 𝑇𝑇𝑖𝑖

𝑡𝑡 + ∅12 𝑇𝑇𝑚𝑚
𝑡𝑡 + ∅13 𝑇𝑇𝑎𝑎

𝑡𝑡 + ∅14 𝐼𝐼𝑔𝑔
𝑡𝑡 + ∅15𝑄𝑄𝑡𝑡 + 𝑣𝑣1(𝑑𝑑)𝑡𝑡

𝑇𝑇𝑚𝑚𝑡𝑡+1 =  ∅21 𝑇𝑇𝑖𝑖
𝑡𝑡 + ∅22 𝑇𝑇𝑚𝑚

𝑡𝑡 + ∅23 𝑇𝑇𝑎𝑎
𝑡𝑡 + ∅24 𝐼𝐼𝑔𝑔

𝑡𝑡 + ∅25𝑄𝑄𝑡𝑡 + 𝑣𝑣2(𝑑𝑑)𝑡𝑡
 (2) 

We are interested to characterize the thermal dynamics after pre-cooling events when the AC is turned off. Hence, the term Q 
is removed from the model because it is equal to zero during the period of interest. Since there is no measurement of thermal 
mass temperature, and only the temporal variation of indoor temperature is measured, the term 𝑇𝑇𝑚𝑚 must be omitted from 
equation (2). To do so, by adjusting the time and developing the second relation for Tmt, this term is substituted into the first 
relation and assuming  𝑇𝑇𝑚𝑚𝑡𝑡−1 ≈ 𝑇𝑇𝑖𝑖𝑡𝑡−1, the temporal evolution of indoor temperature is obtained according to equation (3): 

 𝑇𝑇𝑖𝑖𝑡𝑡 =  𝜃𝜃1 𝑇𝑇𝑖𝑖𝑡𝑡−1 + 𝜃𝜃2 𝑇𝑇𝑖𝑖𝑡𝑡−2 + 𝜃𝜃3 𝑇𝑇𝑎𝑎𝑡𝑡−1 + 𝜃𝜃4 𝑇𝑇𝑎𝑎𝑡𝑡−2 + 𝜃𝜃5 𝐼𝐼𝑔𝑔𝑡𝑡−1 + 𝜃𝜃6 𝐼𝐼𝑔𝑔𝑡𝑡−2 + 𝑣𝑣(𝑑𝑑)𝑡𝑡 (3) 

In this equation, all the time indices are shifted by one to formulate 𝑇𝑇𝑖𝑖𝑡𝑡, instead of 𝑇𝑇𝑖𝑖𝑡𝑡+1. Hence, t-2 has appeared in time indices. 
This is a second-order autoregressive model that calculates the current indoor air temperature as the output. To study the relation 
between input and output signals, the transfer function of the model can be obtained using Z-transform, as shown in equation (4) 
[19]: 

 𝑇𝑇𝑖𝑖𝑡𝑡 =  (𝜃𝜃3𝛽𝛽+𝜃𝜃4𝛽𝛽2) 𝑇𝑇𝑎𝑎𝑡𝑡

(1−𝜃𝜃1𝛽𝛽+𝜃𝜃2𝛽𝛽2)  + 
(𝜃𝜃5𝛽𝛽+𝜃𝜃6𝛽𝛽2) 𝐼𝐼𝑔𝑔𝑡𝑡

(1−𝜃𝜃1𝛽𝛽+𝜃𝜃2𝛽𝛽2)
 (4) 

in which 𝛽𝛽 is a backshift operator (𝛽𝛽 𝑇𝑇𝑖𝑖𝑡𝑡=𝑇𝑇𝑖𝑖𝑡𝑡−1). Using the roots of the denominator in equation (4), the time constants can be 
obtained using equation (5) [18]: 

 𝜏𝜏𝑗𝑗 =  
𝑠𝑠

ln |𝑞𝑞𝑗𝑗|  ∀𝑗𝑗 ∈ [1,2] (5) 

In which s is the sampling time and 𝑞𝑞𝑗𝑗 is the roots of the denominator of the transfer function. The sampling time of the original 
dataset is 1 hour, but to capture the short-term dynamics, the data is interpolated linearly, and the sampling time is converted to 10 
minutes. 

1.5 PARAMETER ESTIMATION 
The main model that represents the evolution of indoor air temperature is based on equation (3). The coefficients of this model are 
obtained by least-square fit, using the AccuRate dataset. Then, using the identified model parameters, roots of the denominator of 
equation (4) are calculated and passed to equation (5) to calculate time constants. SciPy library [23] that is a Python scientific tool 
for various mathematical operations, including linear algebra, was used to obtain model parameters. The coefficient of determination 
of the fit for all the zones is around 99%. Moreover, the distribution of error is near zero with negligible standard deviation, for all 
the zones. This confirms that the coefficients obtained through least-square fit are reliable to describe the dynamics of the system.  

1.6 RESULTS AND DISCUSSION 
To have an estimation of the thermal behaviour of each case study building, the average of its zones’ time constants was calculated 
and presented in Table 2. The highest and lowest 𝜏𝜏2 belong to M and B, respectively, while the highest and lowest 𝜏𝜏1 belong to M_2 
and M, respectively. It highlights that the short response of these buildings is different from their long response, and a building that 
responds slower in a long period might have a quicker short response. In other words, the rate of heat transfer between the thermal 
mass and indoor air might not have a direct relationship with the heat transfer rate between indoor and outdoor environments. 

Table 2. Time constants averaged across all the zones for each case study. 
 

B M M_2 
𝝉𝝉𝟏𝟏 [mm] 17 14 

 

19 
 

𝝉𝝉𝟐𝟐 [h:mm] 3:08 5:56 4:10 
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Figure 2 illustrates the joint plot of the time constants associated with each zone, with their distributions. Based on this figure and 
Table 2, in terms of the heat transfer between indoor and outdoor environments, B has the fastest response, with a 𝜏𝜏2 about 3 hours. 
𝜏𝜏2 of M is approximately 6 hours which makes it the slowest building. From the magnitude of 𝜏𝜏2, the level of insulation, solar heat 
gain, and airtightness of the buildings can be interpreted. Since there is no formulation to directly relate these physical properties to 
𝜏𝜏2, its relative values can be used to rank buildings. Another conclusion that can be derived from the magnitude of 𝜏𝜏2 is the ratio of 
exterior surface area to volume of the building. Higher value of this ratio means higher thermal coupling with the ambient, and 
consequently faster response (lower 𝜏𝜏2). 
On the other hand, 𝜏𝜏1 describes how fast the thermal mass of the building releases heat. Because the heat release rate has a direct 
relationship with thermal mass properties, and thickness [5], 𝜏𝜏1 can be a reliable metric to compare these parameters related to the 
thermal mass of different buildings. According to the results, the smallest mean value of 𝜏𝜏1 which is 14 minutes belongs to M, and 
M_2 has the largest mean value which is 19 minutes. Based on this difference, one can conclude that the thickness of thermal mass 
in M might be less than that of M_2, which has a slower response [5]. Moreover, the percentage of thermal mass distributed on the 
surface can be higher in M, which leads to faster heat transfer with indoor air. The location of thermal mass significantly affects 
thermal dynamics [24] as well. The closer the thermal mass to the surface, the faster the heat transfer.  

 

Figure 2. Distribution of time constants for different zones in the three case study buildings. 

The conclusions about the thermal dynamics of the three investigated case studies are validated in Figure 3. Building B that has the 
smallest 𝜏𝜏2, has the fastest response, highest peak, and shortest time in terms of retaining thermal comfort conditions. Conversely, 
building M, which has the largest 𝜏𝜏2, outperforms the other two buildings in terms of retaining thermal comfort conditions and has 
the slowest response. 
To understand the relationship between the time constants of a zone with its cooling decay profile, the cooling decay profile of each 
zone is averaged in a month. Figure 4, Figure 5, and Figure 6 illustrate the results for M_2, B, and M, respectively.  The analysis is 
conducted for all the buildings based on the typical meteorological year of Brisbane weather conditions. By visual inspection of the 
graphs, some interesting relationships can be found. Firstly, the temperature evolution profile of zones with relatively smaller 𝜏𝜏2 
peak earlier than those with larger 𝜏𝜏2. For example, in Figure 4, temperature evolution for KitchenMealsF (𝜏𝜏2 of 1h and 28 min) in 
January peaks around 7:00 PM while the same graph for Entry (𝜏𝜏2 of 4h and 27mm) has a peak around 11:00 PM. Moreover, some 
zones with significantly larger 𝜏𝜏2, such as Pantry, Study, and FF-Powder2, remain thermally comfortable for the next 8 hours if they 
are pre-cooled to 20℃. 

 

Figure 3. Decay cooling averaged across all the zones in different months. 
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Since some temperature profiles (e.g., Study in Figure 4) are not even close to the upper limit of thermal comfort, maybe it is not 
necessary to pre-cool them to 20℃, and higher temperatures at the beginning of the cooling decay might keep them within the 
thermal comfort range for the rest of the day.  

 

Figure 4. Monthly  averaged cooling decay of each zone of M_2, after pre-cooling to 20℃. The green box is the thermal comfort range. 

Figure 5 and Figure 6 illustrate cooling decay profiles for buildings B and M, respectively. The same relationships between time 
constants and cooling decay profile can be observed in these two figures as well. Some zones of M have almost equal 𝜏𝜏2, but different 
𝜏𝜏1. For example, FF-Ensuite and Entry have very close values of 𝜏𝜏2, but 𝜏𝜏1 of Entry is about 3 times larger. Consequently, the 
temperature profile of Entry does not cross 24℃ before midnight while the temperature of FF-Ensuite violates thermal comfort 
before 8:00 PM and reaches around 27℃ at 11:00 PM. The same behaviour is reported for Living and FF-WIR1. Considering these 
relationships between 𝜏𝜏1, 𝜏𝜏2, and cooling decay profile, one can conclude that with equal 𝜏𝜏2(long-term time constant), the zone with 
larger 𝜏𝜏1(short-term time constant) would be more appropriate for pre-cooling because it retains thermal comfort for longer periods. 
Further investigation of how 𝜏𝜏1 and 𝜏𝜏2 might be related together, and why some zones, like FF-Bedroom3 in M_2, does not keep the 
indoor temperature within the thermal comfort range despite its relatively large 𝜏𝜏2 are going to be discussed in future works. 
 

 

Figure 5. Monthly  averaged cooling decay of each zone of B, after pre-cooling to 20℃. The green box is the thermal comfort range. 
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Figure 6. Monthly averaged cooling decay of each zone of M, after pre-cooling to 20℃. The green box is the thermal comfort range. 

1.7 CONCLUSIONS 
In this paper, the pre-cooling potentials of three multi-zone Australian buildings are investigated by comparing their ability to retain 
thermal comfort after turning the air conditioner off. The temperature evolution is modelled by simulating the change of indoor air 
and thermal mass temperatures simultaneously, by deriving an autoregressive model from a second-order linear stochastic 
differential equation. Then, the transfer function associated with the autoregressive model is constructed and its time constants are 
obtained. The dataset used in this research is generated by AccuRate, software for rating the energy efficiency of Australian buildings. 
It is shown that the present model can take solar radiation into account for the calculation of time constants, and is also reliable for 
cooling applications. Moreover, the simulation of each zone shows that larger time constants delay the peak of indoor temperature 
significantly. It is also observed that if the long-term time constants of two zones are almost equal, the one with a higher short-term 
time constant has better performance in terms of retaining thermal comfort conditions. The results highlight that these two time 
constants that were used for heating applications in previous studies, can be reliable metrics to rank buildings based on their pre-
cooling potential, and the ability to maintain the indoor environment cool after each pre-cooling. Whether or not higher time 
constants lead to more cost savings and peak load reduction associated with pre-cooling can be discussed in future works. 
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